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OS Kernel

OS kernel is ubiquitous and crucial, but also vulnerable. 
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Syscall-based greybox fuzzing is a popular technique for finding vulnerabilities.
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However, it is non-trivial to trigger 
kernel vulnerabilities.



Motivation

Input synthesis is one of bottlenecks.

• Explicit/implicit dependency.

• Complex bug condition.

• Huge search space              .
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Input synthesis is one of bottlenecks.

Existing works have limitations in modeling dependency.

• 24-hour run: 8% of input has 3+ syscalls.

• Context-free dependency/mutation.

• Underrate the seed corpus.



Context-aware dependency is desired.
But, how to automatically model and utilize

context-aware dependency for better fuzzing?



Our Approach

MOCK: a prototype for context-aware kernel fuzzing.



Context-aware Dependency Modeling

¤ Infer context-aware dependency
• a conditional probability under 

various contexts.
• regarded as a NLP problem.

¤ Prepare trainingset.
• syscall sequences that achieve 

new code coverage.
• sequence minimization[1-2].

¤ Employ language model
• Bi-LSTM model  that detects both 

front and rear contexts.

[1] Syzkaller, https://github.com/google/syzkaller
[2] Sun, Hao, et al. "Healer: Relation learning guided kernel fuzzing." SOSP’21.



Context-aware Mutation

¤ Extract context
• decide a mutation position.
• extract front and rear contexts.

¤ Candidate suggestion
• feed front and rear context

into the model, respectively.
• predict candidate syscalls with

two probabilities Pfront and Prear.

¤ Syscall selection
• merge Pfront and Prear as the

ultimate distribution Pi.
• random choose a candidate by weight Pi.



Task Scheduling

¤ Why scheduling
• over-reliance is harmful.
• lack of diversity.
• limited mutation candidates.

¤ Multi-armed bandit
• static dependency

& context-aware dependency.
• UCB-1 algorithm.
• coverage-oriented rewards.
• the task that discovers more

new code coverage is preferred.



Evaluation

• RQ1: How does MOCK perform in code coverage?

• RQ2: How effective is context-aware dependency compared to context-

free dependency?

• RQ3: Do various setups (e.g. initial seeds, pre-trained models) reduce 

warmup time and boost fuzzing performance?

• RQ4: How does MOCK perform in vulnerability detection?

• RQ5: Can MOCK discover new vulnerabilities in real-world kernels?

• RQ6: How is the significance and overhead of key components in MOCK?



Experiment Setup

• Target kernel: Linux-5.4, 5.10, 5.15.

• The same configuration of kernels and resources.

• Baseline: Syzkaller, HEALER, SyzVegas.

• Fuzzing time budget: 144 hours.

• No initial seeds.



Evaluation (1/6)

¤ Coverage Performance

• code coverage: MOCK achieves a 7% increase compared to SOTAs on average.

• speed-up: MOCK achieves a 1.71x acceleration compared to SOTAs on average.



Evaluation (2/6)

¤ Effectiveness of Context-aware Dependency

• testcase analysis: MOCK can produce 50% more interrelated syscall sequences.

• contextual mutation analysis: context-aware dependency facilitates more

interrelated input synthesis while marginally deficient in a simple context.



Evaluation (3/6)

¤ Various setups

• fuzzing with initial seeds: more coverage

growth (21%), higher speed-up (2.58x) 

and more interrelated sequences.

• Pre-trained model

• corpus source: syzbot, previous runs.

• MOCK-Pretrain earns advantages soon after startup.

• both setups reduce the warmup time and boost the fuzzing performance.



Evaluation (4/6)

¤ Vulnerability Detection Ability

• MOCK finds 15% more vulnerabilities than SOTAs.

• MOCK outperforms in finding vulnerabilities whose triggering requires 

more interrelated syscall sequences.



Evaluation (5-6/6)

¤ Real-World Vulnerabilities Discovery

• MOCK found 15 unique vulnerabilities, of 

which four are confirmed and four are fixed. 

• we also received two CVEs.

¤ Further analysis

• every component in MOCK has a crucial role to play.

• our designs introduce negligible overhead.



Future Work

• Incorporate various model structure and extra features (e.g. parameter 

types, direction) to augment dependency model.

• Extend dependency inference to syscalls in a concurrency space.



Conclusion

• A new fuzzing solution MOCK to enhance input synthesis.

• MOCK infers dependency using data-driven approaches and conducts 

context-aware mutation with the dependency.

• Comprehensive evaluation shows MOCK outperforms the SOTA fuzzers

in fuzzing Linux kernels.



Contact: stitch@zju.edu.cn
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