
MOCK: Optimizing Kernel Fuzzing Mutation
with Context-aware Dependency

Jiacheng Xu1, Xuhong Zhang1, Shouling Ji1, Yuan Tian2

BinBin Zhao3, Qingying Wang1, Peng Cheng1, Jiming Chen1

1Zhejiang University 2University of California, Los Angeles 3Georgia Institute of Technology

OS Kernel

OS kernel is ubiquitous and crucial, but also vulnerable.

Kernel Fuzzing

Initial Inputs Seed Corpus

Seed
Selection

New
Code Coverage?

Target
Kernel

CrashSeed
Mutation

Syscall-based greybox fuzzing is a popular technique for finding vulnerabilities.

socket$INET
bind$INET
connect$INET
write$EVDEV

socket$INET
bind$INET
connect$INET
setsockopt$INET
write$EVDEV

Kernel Fuzzing

Initial Inputs Seed Corpus

Seed
Selection

New
Code Coverage?

Target
Kernel

CrashSeed
Mutation

Syscall-based greybox fuzzing is a popular technique for finding vulnerabilities.

socket$INET
bind$INET
connect$INET
write$EVDEV

socket$INET
bind$INET
connect$INET
setsockopt$INET
write$EVDEV

However, it is non-trivial to trigger
kernel vulnerabilities.

Motivation

Input synthesis is one of bottlenecks.

• Explicit/implicit dependency.

• Complex bug condition.

• Huge search space .

Motivation

• Explicit/implicit dependency.

• Complex bug condition.

• Huge search space .

Input synthesis is one of bottlenecks.

Existing works have limitations in modeling dependency.

• 24-hour run: 8% of input has 3+ syscalls.

• Context-free dependency/mutation.

• Underrate the seed corpus.

Context-aware dependency is desired.
But, how to automatically model and utilize

context-aware dependency for better fuzzing?

Our Approach

MOCK: a prototype for context-aware kernel fuzzing.

Context-aware Dependency Modeling

¤ Infer context-aware dependency
• a conditional probability under

various contexts.
• regarded as a NLP problem.

¤ Prepare trainingset.
• syscall sequences that achieve

new code coverage.
• sequence minimization[1-2].

¤ Employ language model
• Bi-LSTM model that detects both

front and rear contexts.

[1] Syzkaller, https://github.com/google/syzkaller
[2] Sun, Hao, et al. "Healer: Relation learning guided kernel fuzzing." SOSP’21.

Context-aware Mutation

¤ Extract context
• decide a mutation position.
• extract front and rear contexts.

¤ Candidate suggestion
• feed front and rear context

into the model, respectively.
• predict candidate syscalls with

two probabilities Pfront and Prear.

¤ Syscall selection
• merge Pfront and Prear as the

ultimate distribution Pi.
• random choose a candidate by weight Pi.

Task Scheduling

¤ Why scheduling
• over-reliance is harmful.
• lack of diversity.
• limited mutation candidates.

¤ Multi-armed bandit
• static dependency

& context-aware dependency.
• UCB-1 algorithm.
• coverage-oriented rewards.
• the task that discovers more

new code coverage is preferred.

Evaluation

• RQ1: How does MOCK perform in code coverage?

• RQ2: How effective is context-aware dependency compared to context-

free dependency?

• RQ3: Do various setups (e.g. initial seeds, pre-trained models) reduce

warmup time and boost fuzzing performance?

• RQ4: How does MOCK perform in vulnerability detection?

• RQ5: Can MOCK discover new vulnerabilities in real-world kernels?

• RQ6: How is the significance and overhead of key components in MOCK?

Experiment Setup

• Target kernel: Linux-5.4, 5.10, 5.15.

• The same configuration of kernels and resources.

• Baseline: Syzkaller, HEALER, SyzVegas.

• Fuzzing time budget: 144 hours.

• No initial seeds.

Evaluation (1/6)

¤ Coverage Performance

• code coverage: MOCK achieves a 7% increase compared to SOTAs on average.

• speed-up: MOCK achieves a 1.71x acceleration compared to SOTAs on average.

Evaluation (2/6)

¤ Effectiveness of Context-aware Dependency

• testcase analysis: MOCK can produce 50% more interrelated syscall sequences.

• contextual mutation analysis: context-aware dependency facilitates more

interrelated input synthesis while marginally deficient in a simple context.

Evaluation (3/6)

¤ Various setups

• fuzzing with initial seeds: more coverage

growth (21%), higher speed-up (2.58x)

and more interrelated sequences.

• Pre-trained model

• corpus source: syzbot, previous runs.

• MOCK-Pretrain earns advantages soon after startup.

• both setups reduce the warmup time and boost the fuzzing performance.

Evaluation (4/6)

¤ Vulnerability Detection Ability

• MOCK finds 15% more vulnerabilities than SOTAs.

• MOCK outperforms in finding vulnerabilities whose triggering requires

more interrelated syscall sequences.

Evaluation (5-6/6)

¤ Real-World Vulnerabilities Discovery

• MOCK found 15 unique vulnerabilities, of

which four are confirmed and four are fixed.

• we also received two CVEs.

¤ Further analysis

• every component in MOCK has a crucial role to play.

• our designs introduce negligible overhead.

Future Work

• Incorporate various model structure and extra features (e.g. parameter

types, direction) to augment dependency model.

• Extend dependency inference to syscalls in a concurrency space.

Conclusion

• A new fuzzing solution MOCK to enhance input synthesis.

• MOCK infers dependency using data-driven approaches and conducts

context-aware mutation with the dependency.

• Comprehensive evaluation shows MOCK outperforms the SOTA fuzzers

in fuzzing Linux kernels.

Contact: stitch@zju.edu.cn

	幻灯片编号 1
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21

